

SPECIFICATION FOR TFT LCD MODULE

CUSTOMER :	

CUSTOMER MODULE :_____

HL MODEL : HG173FH002

Preliminary Specification

Final Specification

Customer Confirmation col	lumn:	
Approved by :	Dept. :	Data :
within two weeks after you re	eceive this docum	ication with your signature to us ment.If it is not returned,we will of this specification document.

Designed by	Checked by	Approved by

Contents

No.	Items	Page
1.0	General Description	3
2.0	Absolute Maximum Ratings	5
3.0	Electrical Specifications	6
4.0	Optical Specifications	8
5.0	Interface Connection	13
6.0	Signal Timing Specification	18
7.0	Input Signals, Display Colors & Gray Scale of Colors	20
8.0	Power Sequence	21
9.0	Connector Description	
10.0	Mechanical Characteristics	23
11.0	Reliability Test	24
12.0	Handling & Cautions	24
13.0	Packing Information	
14.0	Mechanical Outline Dimension	
15.0	EDID Table	27

1.0 GENERAL DESCRIPTION

1.1 Introduction

HG173FH002 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 17.3 inch diagonally measured active area with Full-HD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M(8bit) colors and color gamut SRGB100%. The TFT-LCD panel used for this module is a low reflection and higher color type. Therefore, this module is suitable for Notebook PC. The LED driver for back-light driving is built in this model.

All input signals are eDP1.2 interface compatible.

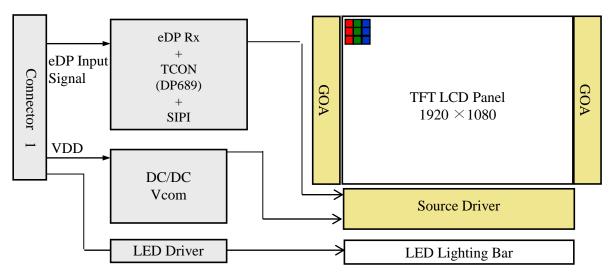


Figure 1. Drive Architecture

1.2 Features

- 2 lane eDP interface with 2.7 Gbps link rates
- Thin and light weight
- 16.7M(8bit) color depth, color gamut SRGB 100%
- Single LED lighting bar (Bottom side/Horizontal Direction)
- Data enable signal mode
- Side mounting frame
- Green product (RoHS & Halogen free product)
- On board LED driving circuit
- On board EDID chip

1.3 Application

• Notebook PC (Wide type)

1.4 General Specification

The followings are general specifications at the model HG173FH002 (listed in Table 1)

Parameter	Specification	Unit	Remarks
Active area	381.89(H) ×214.81(V)		
Number of pixels	1920 (H) ×1080 (V)	pixels	
Pixel pitch	198.9(H) ×198.9(V)	um	
Pixel arrangement	RGB Vertical stripe		
Display colors	16.7M(8bit)		
Color gamut	100%typ.95%min.		sRBG
Display mode	Normally Black		
Dimensional outline	$389.89(H) \pm 0.3 \times 238.31(V) \pm 0.5 (W PCB)$	mm	
Weight	500(max)	g	
Surface treatment	AG		
Surface hardness	3Н		
Back-light	Bottom edge side, 1-LED lighting bar type		Note 1
	P _D : 0.85 (Max)	W	@Mosaic
Power consumption	P _{BL} : 5.44 (Max)	W	
	P _{Total} : 6.29 (Max)	W	@Mosaic

<Table 1. General Specifications>

Notes : 1. LED Lighting Bar (60*LED Array)

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

Parameter	Symbol	Min.	Max.	Unit	Remarks
Power Supply Voltage	V _{DD}	-0.3	5.5	V	Note 1
Logic Supply Voltage	V _{IN}	V _{ss} -0.3	V _{DD} +0.3	V	Note 1
Operating Temperature	T _{OP}	0	+50	°C	Note 2
Storage Temperature	T _{ST}	-20	+60	°C	Note 2

< Table 2. Absolute Maximum Ratings>

Ta=25+/-2°C

Notes :

1. Permanent damage to the device may occur if maximum values are exceeded functional operation should be restricted to the condition described under normal operating conditions.

2. Temperature and relative humidity range are shown in the figure below.

95 % RH Max. (40 °C \geq Ta) Maximum wet - bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation.

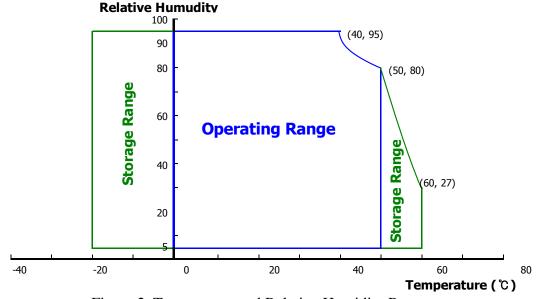


Figure 2. Temperature and Relative Humidity Range

HG173FH002

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

< Tat		Ta=25+/-2°C				
Parameter		Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage	V _{DD}	3.0	3.3	3.6	V	Note 1
Permissible Input Ripple Voltage	V _{RF}	-	-	660	mV	@ $V_{DD} = 3.3 V$
Power Supply Current	I _{DD}	-	258	606	mA	Note 1
Power Supply Inrush Current	Inrush	-	-	2	А	Note3
	P _D	-	0.85	2.0	W	Note 1
Power Consumption	P _{BL}	-	-	5.44	W	Note 2
	P _{total}	-	6.29	7.44	W	Note 1

Notes :

- 1. The supply voltage is measured and specified at the interface connector of LCM.
 - The current draw and power consumption specified is for 3.3V at 25 $^\circ\text{C}.$
 - a) Typ : Mosaic pattern 8*8
 - b) Max : H1 line 255 patterns

Figure 3. Power Measure Patterns

- 2. Calculated value for reference (VLED \times ILED)
- 3. Measure condition (Figure 4)

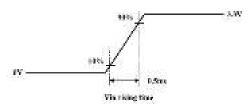
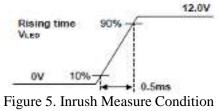


Figure 4. Inrush Measure Condition

3.2 Backlight Unit

< Table 4. LED Driving Guideline Specifications >

 $Ta=25+/-2^{\circ}C$


	Parameter		Min.	Тур.	Max.	Unit	Remarks
LED Forward V	oltage	V _F	-	-	3.0	V	
LED Forward C	urrent	$I_{\rm F}$	-	22.5	-	mA	
LED Power Cor	sumption	P _{LED}	-	-	5.44	W	Note 1
LED Life-Time		N/A	15,000	-	-	Hour	$I_F = 22.5 mA$
Power Supply V Driver	oltage for LED	V _{LED}	6	12	20	V	
Power Supply V Driver Inrush	Power Supply Voltage for LED Driver Inrush		-	-	2	А	Note 4
EN Control	Backlight On		2.5	-	5.0	V	
Level	Level Backlight Off		0	-	0.6	V	
PWM Control	High Level		2.5	-	5.0	V	
Level Low Level			0	-	0.6	V	
PWM Control Frequency		F _{PWM}	200	-	10,000	Hz	
Duty Ratio			5	-	100	%	Note 3

Notes :

1. Power supply voltage 12V for LED driver.

Calculator value for reference IF \times VF \times 60 /driver efficiency = PLED

- 2. The LED life-time define as the estimated time to 50% degradation of initial luminous.
- 3. 5% duty cycle is achievable with a dimming frequency less than 1KHz.
- 4. Measure condition (Figure 5)

4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of luminance meter system (Goniometer system and TOPCON BM-5) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0°. We refer to $\theta \emptyset = 0$ (= $\theta 3$) as the 3 o'clock direction (the "right"), $\theta \emptyset = 90$ (= $\theta 12$) as the 12 o'clock direction ("upward"), $\theta \emptyset = 180$ (= $\theta 9$) as the 9 o'clock direction ("left") and $\theta \emptyset = 270$ (= $\theta 6$) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement. VDD shall be 3.3+/-0.3V at 25°C. Optimum viewing angle direction is 6 'clock.

4.2 Optical Specifications

<1able 5. Optical Specifications>								
Paramo	eter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remark
	Harimontal	Θ_3		80	85	-	Deg.	
Viewing Angle	Horizontal	Θ_9	CR > 10	80	85	-	Deg.	Note 1
Range	Vertical	Θ_{12}	CR > 10	80	85	-	Deg.	Note 1
	Vertical	Θ_6		80	85	-	Deg.	
Luminance Cor	ntrast Ratio	CR	$\Theta = 0^{\circ}$	900	1200	-		Note 2
Luminance of White	5 Points	Y _w	$\Theta = 0^{\circ}$	1000	1000	-	cd/m ²	Note 3
White	5 Points	ΔΥ5	O = 0 ILED = 22.5mA	80	-	-		
Luminance Uniformity	13 Points	ΔΥ13		65	-	-		Note 4
White Chase	matiaita.	W _x	W _x O OO		0.313	0.343		Note 5
White Chron	maticity	W _v	$\Theta = 0^{\circ}$	0.299	0.329	0.359		Note 5
	Red	R _x			0.640			
	Keu	R _v			0.330			
Reproduction	Green	G _x			0.300			
of Color	Green	Gy	$\Theta = 0^{\circ}$	-0.030	0.600	+0.030		
		B _x			0.150			
	Blue	B _y			0.060			
Color Ga	amut			95	100	-	%	sRGB
Response	Time	T _{RT}	$Ta=25^{\circ}C$ $\Theta=0^{\circ}$	-	17	25	ms	Note 6
Cross T	alk	СТ	$\Theta = 0^{\circ}$	-	-	2.0	%	Note 7

<Table 5. Optical Specifications>

Notes :

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (see Figure 7).
- 2. Contrast measurements shall be made at viewing angle of $\Theta = 0$ and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state . (see Figure 7) Luminance Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster Luminance when displaying a black raster

- 3. Center Luminance of white is defined as luminance values of 5 point average across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 8 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as : $\Delta Y =$ Minimum Luminance of 5(or 13) points / Maximum Luminance of 5(or 13) points.(see Figure 8 and Figure 9).
- 5. The color chromaticity coordinates specified in Table 5 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. The electro-optical response time measurements shall be made as Figure 10 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 90% to 10% is T_f, and 10% to 90% is T_r.
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark. (See Figure 11).

4.3 Optical Measurements

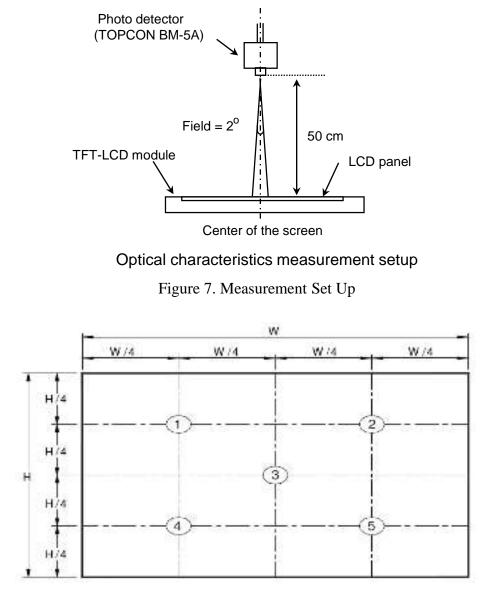


Figure 8. White Luminance and Uniformity Measurement Locations (5 points)

Center Luminance of white is defined as luminance values of center 5 points across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 7 for a total of the measurements per display.

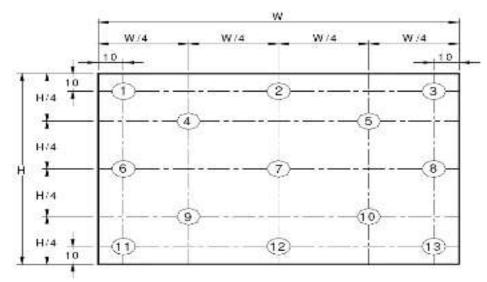


Figure 9. Uniformity Measurement Locations (13 points)

The White luminance uniformity on LCD surface is then expressed as : $\Delta Y5 =$ Minimum Luminance of five points / Maximum Luminance of five points (see Figure 8), $\Delta Y13 =$ Minimum Luminance of 13 points /Maximum Luminance of 13 points (see Figure 9).

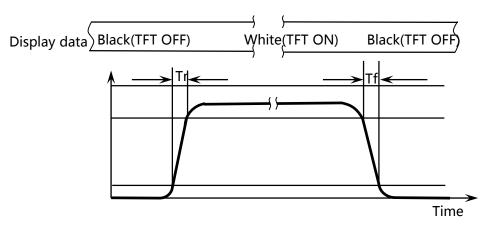
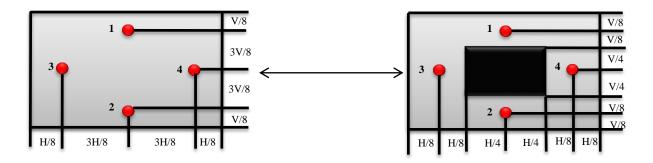



Figure 10. Response Time Testing

The electro-optical response time measurements shall be made as shown in Figure 10 by switching the "data" input signal ON and OFF. Tr: The luminance to change from 10% to 90%, Tf: The luminance to change from 90% to10%.

The test system : Goniometer system and TOPCON BM-5

Cross Talk (%) =
$$\left| \frac{\mathbf{Y}_{\mathrm{B}} - \mathbf{Y}_{\mathrm{A}}}{\mathbf{Y}_{\mathrm{A}}} \right| \times 100$$

Figure 11. Cross Talk Modulation Test Description

Where:

 Y_A = Initial luminance of measured area (cd/m²)

 $Y_B =$ Subsequent luminance of measured area (cd/m²)

The location 1/2/3/4 measured will be exactly the same in both patterns. The test background gray is from L64 to L192. Take the largest data as the result.

Cross Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark.(Refer to Figure 11) The test system: Goniometer system and TOPCON BM-5

5.0 INTERFACE CONNECTION

5.1 Electrical Interface Connection

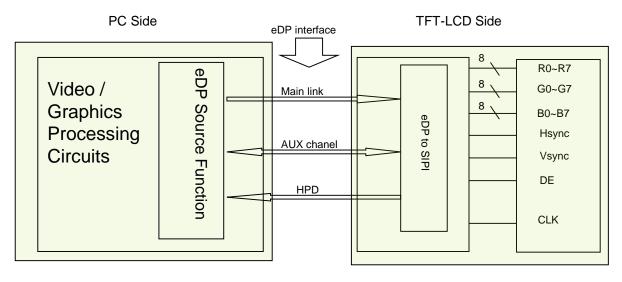
The electronics interface connector is MSAK24025P30. The connector interface pin assignments are listed in Table 6.

<Table 6. Pin Assignments for the Interface Connector>

Terminal	Symbol	Functions	
Pin No.	Symbol	Description	
1	NC	No Connect	
2	H_GND	Ground	
3	LANE1_N	eDP RX Channel 1 Negative	
4	LANE1_P	eDP RX Channel 1 Positive	
5	H_GND	Ground	
6	LANE0_N	eDP RX Channel 0 Negative	
7	LANE0_P	eDP RX Channel 0 Positive	
8	H_GND	Ground	
9	AUX_CH_P	eDP AUX CH Positive	
10	AUX_CH_N	eDP AUX CH Negative	
11	H_GND	Ground	
12	VCC	LCD logic and driver power	
13	VCC	LCD logic and driver power	
14	LCD Self Test	LCD Panel Self Test Enable (Optional)	
15	GND	LCD logic and driver ground	
16	GND	LCD logic and driver ground	
17	HPD	HPD signal pin	
18	BL_GND	LED Backlight ground	
19	BL_GND	LED Backlight ground	
20	BL_GND	LED Backlight ground	

5.0 INTERFACE CONNECTION

5.1 Electrical Interface Connection


The electronics interface connector is MSAK24025P30. The connector interface pin assignments are listed in Table 6.


<Table 6. Pin Assignments for the Interface Connector>

Terminal	Symbol	Functions
Pin No.	Symbol	Description
21	BL_GND	LED Backlight ground
22	BL ENABLE	LED Backlight control on/off control
23	BL PWM	System PWM signal input for dimming
24	NC Reserved	Reserved for LCD manufacture's use
25	NC Reserved	Reserved for LCD manufacture's use
26	VLED	LED Backlight power (12V Typical)
27	VLED	LED Backlight power (12V Typical)
28	VLED	LED Backlight power (12V Typical)
29	VLED	LED Backlight power (12V Typical)
30	NC Reserved	No Connect

5.2 eDP Interface

Note:

Transmitter DP689 or equivalent.

Transmitter is not contained in module.

5.3.eDP Input signal

Lane 0	Lane 1
R0-7:0	R1-7:0
G0-7:0	G1-7:0
B0-7:0	B1-7:0
R4-7:0	R5-7:0
G4-7:0	G5-7:0
B4-7:0	B5-7:0
R8-7:0	R9-7:0
G8-7:0	G9-7:0
B8-7:0	B9-7:0

5.3 Data Input Format

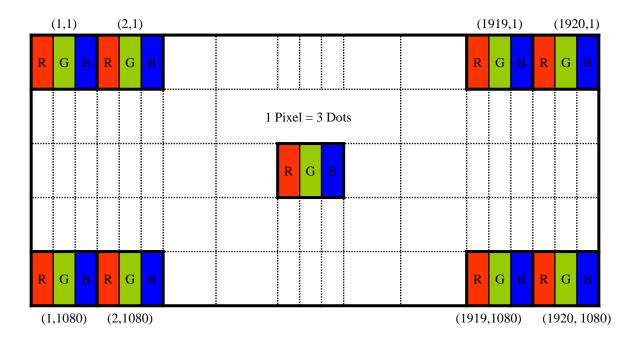


Figure 13. Display Position of Input Data (V-H)

 $\rm HG173FH002$

5.4 Back-light & LCM Interface Connection

BLU Interface Connector: STM MSK24022P10.

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	LED	LED cathode connection	6	LED	LED cathode connection
2	LED	LED cathode connection	7	NC	No Connection
3	LED	LED cathode connection	8	Vout	LED anode connection
4	LED	LED cathode connection	9	Vout	LED anode connection
5	LED	LED cathode connection	10	Vout	LED anode connection

<Table 7. Pin Assignments for the BLU Connector>

6.0 SIGNAL TIMING SPECIFICATION

6.1 The HG173FH002 Is Operated By The DE O nly

Item		Symbols	Min	Тур	Max	Unit
Clock	Frequency	1/Tc	-	140.2	-	MHz
			-	1110	-	lines
Fr	Frame Period		-	60	-	Hz
			-	16.7	-	ms
Vertica	l Display Period	Tvd	-	1080	-	lines
One line Scanning Period		Th	-	2124	-	clocks
Horizontal Display Period		Thd	_	1920	_	clocks

< Table 8. Signal Timing Specification >

Note : The above is as optimized setting.

6.2 eDP Rx Interface Timing Parameter

The specification of the eDP Rx interface timing parameter is shown in Table 9.

Item	Symbol	Min	Тур	Max	Unit	Remark
Spread spectrum clock (Link clock down-spreading)	SSC	-	0.5	-	%	
Differential peak-to-peak input voltage at package pins	VRX-DIFFp-p	100	-	1320	mV	
Rx input DC common mode voltage	VRX_DC_CM	-	GND	-	V	
Differential termination resistance	Rrx-diff	80	100	120	Ω	
Single-ended termination resistance	Rrx-se	40	-	60	Ω	
Rx short circuit current limit	IRX_SHORT	-	-	20	mA	
Intra-pair skew at Rx package pins (HBR) RX intra-pair skew tolerance at HBR	LRX_SKEW_ INTRA_PAIR	-	-	150	ps	

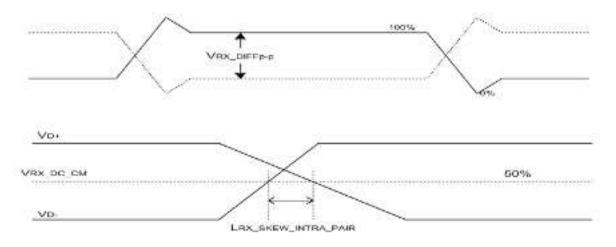
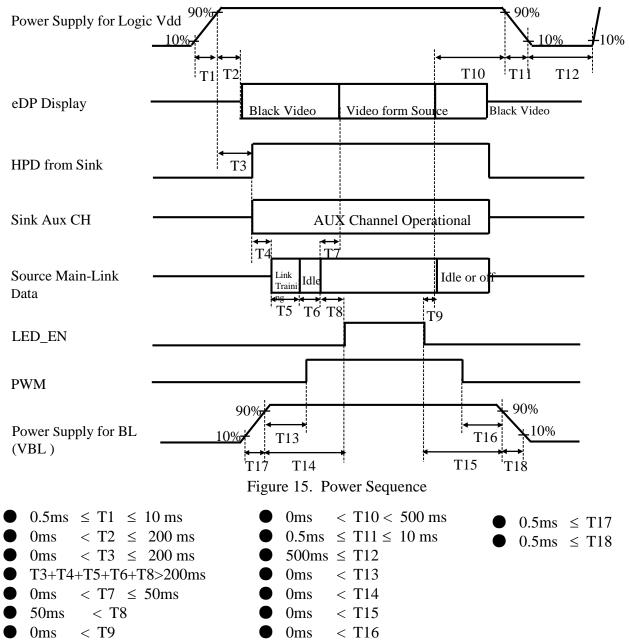


Figure 14. VRX-DIFFp-p & LRX_SKEW_INTRA_PAIR

HG173FH002

7.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS

<Table 10. Input Signal & Basic Display Colors & Gray Scale of Colors >


		Colors &									Data	sig	nal													
		Gray scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B 3	B 4	B5	B 6	B7
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic		Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
colors		Light Blue	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Purple	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
		Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Δ	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Darker	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray scale Red	of																						Ļ			
		Brighter	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		∇	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Δ	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Darker	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray scale Green	of																						Ļ			
		Brighter	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		∇	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
		Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray scale Blue	of																						Ļ			
		Brighter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
		\bigtriangledown	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
		Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray		Δ	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
scale		Darker	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0
of																							1			
White																							Ļ			
&		Brighter	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1
Black		\bigtriangledown	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
		White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

 $\rm HG173FH002$

8.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below.

Notes:

1. When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance. 2. Do not keep the interface signal high impedance when power is on. Back Light must be turn on after power for logic and interface signal are valid.

9.0 Connector Description

Physical interface is described as for the connector on LCM. These connectors are capable of accommodating the following signals and will be following components.

9.1 TFT LCD Module

< Table 11. Signal	Connector	>
--------------------	-----------	---

Connector Name /Description	For Signal Connector
Manufacturer	STM
Type/ Part Number	MSAK24025P30
Mating housing/ Part Number	IPEX 20455-030E

10.0 MECHANICAL CHARACTERISTICS

10.1 Dimensional Requirements

Figure 20 shows mechanical outlines for the model HG173FH002. Other parameters are shown in Table 12.

Parameter	Specification	Unit
Active Area	381.89 (H) ×214.81 (V)	mm
Number of pixels	1920 (H) X 1080 (V) (1 pixel = R + G + B dots)	pixels
Pixel pitch	198.9 (H) ×198.9(V)	um
Pixel arrangement	RGB Vertical stripe	
Display colors	16.7 M(8bit)	
Display mode	Normally Black	
Dimensional outline	$389.89(H) \pm 0.3 \times 238.31(V) \pm 0.5$ (W PCB)	mm
Weight	500(max)	g

<table 12.="" dimensional="" i<="" th=""><th>Parameters></th></table>	Parameters>
--	-------------

10.2 Mounting

See Figure 20.

10.3 Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating and hard coating .

10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 30-35cm from the screen with an overhead light level of 150-200lux.

HG173FH002

11.0 RELIABILITY TEST

The reliability test items and its conditions are shown in below. <Table 13. Reliability Test>

No	Test Items	Conditions					
1	High temperature storage test	$Ta = 60 \ ^{\circ}C, 240 \ hrs$					
2	Low temperature storage test	Ta = -20 °C, 240 hrs					
3	High temperature/High humidity Storage	$Ta = 50 \ ^{\circ}C$, 80% RH, 240 hrs					
4	High temperature operation test	$Ta = 50 \ ^{\circ}C, 240 \ hrs$					
5	Low temperature operation test	$Ta = 0^{\circ}C$, 240 hrs					
6	Thermal Shock Storage	Ta = -20 °C \leftrightarrow 60 °C (0.5 hr), 100 cycle					
7	Shock test	220G, 2ms, Half sine					
/	(non-operating)	$\pm X, \pm Y, \pm Z$ once each direction					
8	Declarge Vibration test	10-500hz, 1.5G,half sine,X,Y,Z/sweep					
0	Package Vibration test	60min					
		Power OFF:					
		Air discharged +/- 15kV Criteria C					
	Electric static dischange test	Contact discharged +/- 8kV Criteria C					
9	Electro-static discharge test	Power ON:					
		Air discharged +/- 10kV Criteria B					
		Contact discharged +/- 6kV Criteria B					

12.0 HANDLING & CAUTIONS

- (1) Cautions when taking out the module
 - Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
 - As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
 - As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
 - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
 - Do not pull the interface connector in or out while the LCD module is operating.
 - Put the module display side down on a flat horizontal plane.
 - Handle connectors and cables with care.
- (3) Cautions for the operation
 - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
 - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.

- (4) Cautions for the atmosphere
 - Dew drop atmosphere should be avoided.
 - Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
 - Do not apply fixed pattern data signal to the LCD module at product aging.
 - Applying fixed pattern for a long time may cause image sticking.
- (6) Other cautions
 - Do not disassemble and/or re-assemble LCD module.
 - Do not re-adjust variable resistor or switch etc.
 - When returning the module for repair or etc. Please pack the module not to be broken. We recommend to use the original shipping packages.

13.0 Packing Information

lype 5+16-80PC 389.95±0.15(LCM## 81.89(LCT) 51.57 录面处理: 机+砸 Front View 227.07±0.15(LCM+68) T 0.00000 ï, A.A SYMBOL -将你孔,此孔不允许46处湿 , KI, KI, KI - KI, KI-由 Autodesk 教育版产品制作 AMENDMENT -Kellekleklek 由 Autodesk 教育版产品制作 5串16并 30V -Side View -KEN KEN 320-400mA -KI, KI, KI, KI, KI SIGN DATE -HG173FH002 XX_XX-XX Back View CUSTOMER'S APPROVAL CHECKED APPROVED DRAWN 2 K 0 \leq TITLE LCM 410.80±5 TE Ð -----SPEC Shenzhen 124,57 llongguang Display Co., LTD DRAWING NO. HG173FH002 PROUDCT NO. UNIT Angle CLUU SHEET 1 OF 1 00 00 VER. 5

由 Autodesk 教育版产品制作

扑峙品气端育烤 AsebotuA 由

15.0 EDID Table

Address (HEX)	Function	Hex	Dec	crc	Input values.	Notes
00		00	0		0	
01		FF	255		255	
02		FF	255		255	
03	lleeden	FF	255		255	
04	Header	FF	255		255	EDID Header
05		FF	255		255	
06		FF	255		255	
07		00	0		0	
08		09	9		DOE	
09	ID Manufacturer Name	E5	229		BOE	ID = BOE
0A	ID Product Code	25	37		2095	ID - 200E
0B	ID Product Code	08	8		2085	ID = 2085
0C		00	0		0	
0D		00	0		0	
0E	32-bit serial No.	00	0		0	
0F		00	0		0	
10	Week of manufacture	01	1		1	
11	Year of Manufacture	1C	28		2018	Manufactured in 2018
12	EDID Structure Ver.	01	1		1	EDID Ver 1.0
13	EDID revision #	04	4		4	EDID Rev. 0.4
14	Video input definition	A5	165		-	Refer to right table
15	Max H image size	26	38		38	38 cm (Approx)
16	Max V image size	15	21		21	21 cm (Approx)
17	Display Gamma	78	120		2.2	Gamma curve = 2.2
18	Feature support	03	3		-	Refer to right table
19	Red/Green low bits	DE	222		-	Red / Green Low Bits
1A	Blue/White low bits	50	80		-	Blue / White Low Bits
1B	Red x high bits	A3	163	655	0.640	Red (x) = 10100011 (0.64)
1C	Red y high bits	54	84	337	0.330	Red $(y) = 01010100 (0.33)$
1D	Green x high bits	4C	76	307	0.300	Green (x) = $01001100 (0.3)$
1E	Green y high bits	99	153	614	0.600	Green (y) = $10011001 (0.6)$
1F	Blue x high bits	26	38	153	0.150	Blue (x) = 00100110 (0.15)
20	BLue y high bits	0F	15	61	0.060	Blue (y) = 00001111 (0.06)
21	White x high bits	50	80	320	0.313	White (x) = 01010000 (0.313)
22	White y high bits	54	84	336	0.329	White $(x) = 01010100 (0.329)$

23	Established timing 1	00	0	-	
24	Established timing 2	00	0	-	Refer to right table
25	Established timing 3	00	0	-	
26	- Standard timing #1	01	1		Natilizad
27	Stanuaru unning #1	01	1		Not Used
28	Chandand timing #2	01	1		Net Llead
29	Standard timing #2	01	1		Not Used
2A	- Standard timing #3	01	1		Natilizad
2B	- Stanuaru unning #5	01	1		Not Used
2C	Standard timing #4	01	1		Natilizad
2D	- Standard timing #4	01	1		Not Used
2E	Chandaud timing #F	01	1		Net Llead
2F	- Standard timing #5	01	1		Not Used
30	Chandand timing #C	01	1		Net Llead
31	 Standard timing #6 	01	1		Not Used
32	Standard timing #7	01	1		Not Used
33	- Standard timing #7	01	1		Not Used
34	Chandand timing #0	01	1		Net Llead
35	- Standard timing #8	01	1		Not Used
36		C4	196	140.0	
37		36	54	140.2	140.2MHz Main clock
38		80	128	1920	Hor Active = 1920
39		CC	204	204	Hor Blanking = 204
3A		70	112	-	4 bits of Hor. Active + 4 bits of Hor. Blanking
3B		38	56	1080	Ver Active = 1080
3C		14	20	20	Ver Blanking = 20
3D		40	64	-	4 bits of Ver. Active + 4 bits of Ver. Blanking
3E		6C	108	108	Hor Sync Offset = 108
3F		30	48	48	H Sync Pulse Width = 48
40	Detailed timing/monitor	AA	170	10	V sync Offset = 10 line
41	descriptor #1	00	0	10	V Sync Pulse width : 10 line
42]	7E	126	382	Horizontal Image Size = 382 mm (Low 8 bits)
43]	D7	215	215	Vertical Image Size = 215 mm (Low 8 bits)
44	-	10	16	-	4 bits of Hor Image Size + 4 bits of Ver Image Size
45		00	0	0	Hor Border (pixels)
46		00	0	0	Vertical Border (Lines)
47		1A	26		Refer to right table

48					
40		86	134	93.	93.5MHz Main clock
49		24	36		
4A	Detailed timing/monitor descriptor #2	80	128	192	0 Hor Active = 1920
4B		CC	204	204	Hor Blanking = 204
4C		70	112	-	4 bits of Hor. Active + 4 bits of Hor. Blanking
4D		38	56	108	0 Ver Active = 1080
4E		14	20	20	Ver Blanking = 20
4F		40	64	-	4 bits of Ver. Active + 4 bits of Ver. Blanking
50		6C	108	108	B Hor Sync Offset = 108
51		30	48	48	H Sync Pulse Width = 48
52		AA	170	10	V sync Offset = 10 line
53		00	0	10	V Sync Pulse width : 10 line
54		7E	126	382	2. Horizontal Image Size = 382 mm (Low 8 bits)
55		D7	215	215	5 Vertical Image Size = 215 mm (Low 8 bits)
56		10	16	-	4 bits of Hor Image Size + 4 bits of Ver Image Size
57		00	0	0	Hor Border (pixels)
58		00	0	0	Vertical Border (Lines)
59		1A	26		
5A	-	00	0		
5B		00	0		
5C		00	0		
5D		00	0		
5E		00	0		
5F		00	0		
60		00	0		
61		00	0		
62	Detailed timing/monitor	00	0		Nvidia nvDPS
63	descriptor #3	00	0		Lowest refresh rate that does not cause any visual/optical side effect
64		00	0		
65		00	0		
66		00	0		
67		00	0		
68		00	0		
69		00	0		
6A		00	0		
		00	0		—

6C	Detailed timing/monitor descriptor #4	00	0		0	Detailed Timing Description #4
6D		00	0		0	Flag
6E		00	0		0	Reserved
6F		02	2			For Brightness Table and Power consumption
70		00	0		0	Flag
71		9	9			PWM % [7:0] @ Step 0
72		33	51			PWM % [7:0] @ Step 5
73		FF	255			PWM % [7:0] @ Step 10
74		0A	10			Nits [7:0] @ Step 0
75		3C	60			Nits [7:0] @ Step 5
76		96	150			Nits [7:0] @ Step 10
77		15	21			Panel Electronics Power @32x32 Chess Pattern=
78		1B	27			Backlight Power @60 nits=
79		44	68			Backlight Power @Step 10=
7A		96	150			Nits @ 100% PWM Duty =
7B		00	0		0	Flags
7C		00	0		0	Flags
7D		00	0		0	Flags
7E	Extension flag	00	0			
7F	Checksum	9A	154	154	-	